Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 994
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835212

RESUMO

To study the relationship between caspase-1/4 and reperfusion injury, we measured infarct size (IS) in isolated mouse hearts undergoing 50 min global ischemia/2 h reperfusion. Starting VRT-043198 (VRT) at reperfusion halved IS. The pan-caspase inhibitor emricasan duplicated VRT's protection. IS in caspase-1/4-knockout hearts was similarly reduced, supporting the hypothesis that caspase-1/4 was VRT's only protective target. NLRC4 inflammasomes activate caspase-1. NLRC4 knockout hearts were not protected, eliminating NLRC4 as caspase-1/4's activator. The amount of protection that could be achieved by only suppressing caspase-1/4 activity was limited. In wild-type (WT) hearts, ischemic preconditioning (IPC) was as protective as caspase-1/4 inhibitors. Combining IPC and emricasan in these hearts or preconditioning caspase-1/4-knockout hearts produced an additive IS reduction, indicating that more protection could be achieved by combining treatments. We determined when caspase-1/4 exerted its lethal injury. Starting VRT after 10 min of reperfusion in WT hearts was no longer protective, revealing that caspase-1/4 inflicted its injury within the first 10 min of reperfusion. Ca++ influx at reperfusion might activate caspase-1/4. We tested whether Ca++-dependent soluble adenylyl cyclase (AC10) could be responsible. However, IS in AC10-/- hearts was not different from that in WT control hearts. Ca++-activated calpain has been implicated in reperfusion injury. Calpain could be releasing actin-bound procaspase-1 in cardiomyocytes, which would explain why caspase-1/4-related injury is confined to early reperfusion. The calpain inhibitor calpeptin duplicated emricasan's protection. Unlike IPC, adding calpain to emricasan offered no additional protection, suggesting that caspase-1/4 and calpain may share the same protective target.


Assuntos
Caspase 1 , Caspases Iniciadoras , Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Calpaína/metabolismo , Caspase 1/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/enzimologia , Caspases Iniciadoras/metabolismo
2.
Sci Rep ; 12(1): 138, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997008

RESUMO

Calpain 1 and 2 (CPN1/2) are calcium-dependent cysteine proteases that exist in cytosol and mitochondria. Pharmacologic inhibition of CPN1/2 decreases cardiac injury during ischemia (ISC)-reperfusion (REP) by improving mitochondrial function. However, the protein targets of CPN1/2 activation during ISC-REP are unclear. CPN1/2 include a large subunit and a small regulatory subunit 1 (CPNS1). Genetic deletion of CPNS1 eliminates the activities of both CPN1 and CPN2. Conditional cardiomyocyte specific CPNS1 deletion mice were used in the present study to clarify the role of CPN1/2 activation in mitochondrial damage during ISC-REP with an emphasis on identifying the potential protein targets of CPN1/2. Isolated hearts from wild type (WT) or CPNS1 deletion mice underwent 25 min in vitro global ISC and 30 min REP. Deletion of CPNS1 led to decreased cytosolic and mitochondrial calpain 1 activation compared to WT. Cardiac injury was decreased in CPNS1 deletion mice following ISC-REP as shown by the decreased infarct size compared to WT. Compared to WT, mitochondrial function was improved in CPNS1 deletion mice following ischemia-reperfusion as shown by the improved oxidative phosphorylation and decreased susceptibility to mitochondrial permeability transition pore opening. H2O2 generation was also decreased in mitochondria from deletion mice following ISC-REP compared to WT. Deletion of CPNS1 also resulted in less cytochrome c and truncated apoptosis inducing factor (tAIF) release from mitochondria. Proteomic analysis of the isolated mitochondria showed that deletion of CPNS1 increased the content of proteins functioning in regulation of mitochondrial calcium homeostasis (paraplegin and sarcalumenin) and complex III activity. These results suggest that activation of CPN1 increases cardiac injury during ischemia-reperfusion by impairing mitochondrial function and triggering cytochrome c and tAIF release from mitochondria into cytosol.


Assuntos
Calpaína/metabolismo , Mitocôndrias Cardíacas/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/enzimologia , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Fator de Indução de Apoptose/metabolismo , Calpaína/genética , Citocromos c/metabolismo , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Preparação de Coração Isolado , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Fosforilação Oxidativa , Transdução de Sinais
3.
Am J Physiol Cell Physiol ; 322(2): C296-C310, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044856

RESUMO

Aging chronically increases endoplasmic reticulum (ER) stress that contributes to mitochondrial dysfunction. Activation of calpain 1 (CPN1) impairs mitochondrial function during acute ER stress. We proposed that aging-induced ER stress led to mitochondrial dysfunction by activating CPN1. We posit that attenuation of the ER stress or direct inhibition of CPN1 in aged hearts can decrease cardiac injury during ischemia-reperfusion by improving mitochondrial function. Male young (3 mo) and aged mice (24 mo) were used in the present study, and 4-phenylbutyrate (4-PBA) was used to decrease the ER stress in aged mice. Subsarcolemmal (SSM) and interfibrillar mitochondria (IFM) were isolated. Chronic 4-PBA treatment for 2 wk decreased CPN1 activation as shown by the decreased cleavage of spectrin in cytosol and apoptosis inducing factor (AIF) and the α1 subunit of pyruvate dehydrogenase (PDH) in mitochondria. Treatment improved oxidative phosphorylation in 24-mo-old SSM and IFM at baseline compared with vehicle. When 4-PBA-treated 24-mo-old hearts were subjected to ischemia-reperfusion, infarct size was decreased. These results support that attenuation of the ER stress decreased cardiac injury in aged hearts by improving mitochondrial function before ischemia. To challenge the role of CPN1 as an effector of the ER stress, aged mice were treated with MDL-28170 (MDL, an inhibitor of calpain 1). MDL treatment improved mitochondrial function in aged SSM and IFM. MDL-treated 24-mo-old hearts sustained less cardiac injury following ischemia-reperfusion. These results support that age-induced ER stress augments cardiac injury during ischemia-reperfusion by impairing mitochondrial function through activation of CPN1.


Assuntos
Calpaína/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Fatores Etários , Animais , Calpaína/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Preparação de Coração Isolado , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Fenilbutiratos/farmacologia
4.
Microvasc Res ; 140: 104302, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34919942

RESUMO

PURPOSE: Myocardial ischemia/reperfusion injury (MI/RI) is a major problem in the clinical treatment of ischemic cardiomyopathy, and its specific underlying mechanisms are complicated and still unclear. A number of studies have indicated that the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxidase-1(HO-1) signaling pathway might serve as an important target for the management of MI/RI. Catalpol is a kind of iridoid glucoside that has been found to exhibit diverse anti-inflammatory and antioxidant properties. This study was aimed at investigating the role of Catalpol in targeting MI/RI and its related mechanisms in an oxygen-glucose deprivation/reoxygenation (OGD/R) model in vitro and a preclinical ischemia/reperfusion (I/R) model. METHODS: This study using both in vitro and in vivo models investigated the possible role and underlying mechanisms used by Catalpol for modulating of MI/RI. The potential effects of Catalpol on the viability of cardiomyocytes were measured by cell counting kit-8 (CCK-8) assays. The phenotypes of myocardial injury, oxidative stress and inflammation markers were measured by western blot, immunofluorescence, enzyme-linked immunosorbent assay (ELISA) etc. Nrf2/HO-1 signaling pathway was detected by immunofluorescence and western blot analysis. RESULTS: We found that Catalpol significantly suppressed the process of MI/RI and protected OGD/R-treated cardiomyocytes by inhibiting the various markers of inflammation and suppressing oxidative stress. Additionally, mechanistically it was also demonstrated that Catalpol could effectively activate Nrf2/HO-1 signaling pathway to suppress the damage caused by inflammation and oxidative stress in MI/RI. CONCLUSION: In summary, the findings suggest that Catalpol exerted significant cardioprotective effects following myocardial ischemia, possibly through the activation of the Nrf2/HO-1 signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Heme Oxigenase-1/metabolismo , Glucosídeos Iridoides/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Hipóxia Celular , Linhagem Celular , Modelos Animais de Doenças , Glucose/deficiência , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
5.
Cell Biol Int ; 46(1): 148-157, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34694031

RESUMO

Currently, the prevention of ischemic diseases such as myocardial infarction associated with ischemia/reperfusion (I/R) injury remains to be a challenge. Thus, this study was designed to explore the effects of tripartite motif protein 11 (TRIM11) on cardiomyocytes I/R injury and its underlying mechanism. Cardiomyocytes AC16 were used to establish an I/R injury cell model. After TRIM11 downregulation in I/R cells, cell proliferation (0, 12, 24, and 48 h) and apoptosis at 48 h as well as the related molecular changes in oxidative stress-related pathways was detected. Further, after the treatment of TRIM11 overexpression, SP600125, or DUSP1 overexpression, cell proliferation, apoptosis, and related genes were detected again. As per our findings, it was determined that TRIM11 was highly expressed in the cardiomyocytes AC16 after I/R injury. Downregulation of TRIM11 was determined to have significantly reduced I/R-induced proliferation suppression and apoptosis. Besides, I/R-activated c-Jun N-terminal kinase (JNK) signaling and cleaved caspase 3 and Bax expression were significantly inhibited by TRIM11 downregulation. In addition, the overexpression of TRIM11 significantly promoted apoptosis in AC16 cells, and JNK1/2 inhibition and DUSP1 overexpression potently counteracted the induction of TRIM11 overexpression in AC16 cells. These suggested that the downregulation of TRIM11 attenuates apoptosis in AC16 cells after I/R injury probably through the DUSP1-JNK1/2 pathways.


Assuntos
Apoptose , Fosfatase 1 de Especificidade Dupla/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/enzimologia , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Hipóxia Celular , Linhagem Celular , Regulação para Baixo , Fosfatase 1 de Especificidade Dupla/genética , Humanos , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/patologia , Transdução de Sinais , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética
6.
Kaohsiung J Med Sci ; 38(1): 38-48, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34369657

RESUMO

Proteins in Jumonji family function as histone demethylases and participate in cardiac development. Jumonji domain containing 5 (JMJD5) is responsible for the embryonic development through removing methyl moieties from H3K36me2 histone, and has pro-proliferative effect on heart and eye development. However, the protective role of JMJD5 against oxygen-glucose deprivation and reperfusion (OGD/R)-induced injury in cardiomyocytes has not been fully understood. Firstly, myocardial ischemia/reperfusion (I/R) rat model was established by ligation of left coronary artery. OGD/R was performed in non-transfected H9C2 or H9C2 transfected with pcDNA-JMJD5 plasmid to induce cell cytotoxicity. Data from qRT-PCR and western blot showed that JMJD5 was reduced in the heart tissues of myocardial I/R rat model and OGD/R-induced H9C2. Secondly, JMJD5 over-expression attenuated OGD/R-induced decrease in cell viability and increase in lactate dehydrogenase secretion and cell apoptosis in H9C2. Mitophagy was promoted by pcDNA-mediated over-expression of JMJD5 with enhanced protein expression of LC3-I, LC3-II, Atg5, and Beclin 1. Thirdly, knockdown of JMJD5 aggravated OGD/R-induced decrease in hypoxia-inducible factor-1α (HIF-1α), whereas JMJD5 over-expression enhanced BNIP3 (Bcl-2/adenovirus E1B 19-kDa interacting protein) through upregulation of HIF-1α. Lastly, BNIP3 silencing promoted cell apoptosis, suppressed mitophagy, and attenuated the protective effects of JMJD5 over-expression against OGD/R-induced injury in H9C2. In conclusion, JMJD5 exerted protective effects against OGD/R-induced injury in cardiomyocytes through upregulation of HIF-1α-BNIP3.


Assuntos
Glucose , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Oxigênio/metabolismo , Animais , Apoptose , Sobrevivência Celular , Modelos Animais de Doenças , Glucose/deficiência , Glucose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Histona Desmetilases com o Domínio Jumonji , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Traumatismo por Reperfusão Miocárdica/induzido quimicamente , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/citologia , Substâncias Protetoras , Ratos
7.
Cardiovasc Res ; 118(1): 282-294, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33386841

RESUMO

AIMS: Genetic and pharmacological inhibition of mitochondrial fission induced by acute myocardial ischaemia/reperfusion injury (IRI) has been shown to reduce myocardial infarct size. The clinically used anti-hypertensive and heart failure medication, hydralazine, is known to have anti-oxidant and anti-apoptotic effects. Here, we investigated whether hydralazine confers acute cardioprotection by inhibiting Drp1-mediated mitochondrial fission. METHODS AND RESULTS: Pre-treatment with hydralazine was shown to inhibit both mitochondrial fission and mitochondrial membrane depolarisation induced by oxidative stress in HeLa cells. In mouse embryonic fibroblasts (MEFs), pre-treatment with hydralazine attenuated mitochondrial fission and cell death induced by oxidative stress, but this effect was absent in MEFs deficient in the mitochondrial fission protein, Drp1. Molecular docking and surface plasmon resonance studies demonstrated binding of hydralazine to the GTPase domain of the mitochondrial fission protein, Drp1 (KD 8.6±1.0 µM), and inhibition of Drp1 GTPase activity in a dose-dependent manner. In isolated adult murine cardiomyocytes subjected to simulated IRI, hydralazine inhibited mitochondrial fission, preserved mitochondrial fusion events, and reduced cardiomyocyte death (hydralazine 24.7±2.5% vs. control 34.1±1.5%, P=0.0012). In ex vivo perfused murine hearts subjected to acute IRI, pre-treatment with hydralazine reduced myocardial infarct size (as % left ventricle: hydralazine 29.6±6.5% vs. vehicle control 54.1±4.9%, P=0.0083), and in the murine heart subjected to in vivo IRI, the administration of hydralazine at reperfusion, decreased myocardial infarct size (as % area-at-risk: hydralazine 28.9±3.0% vs. vehicle control 58.2±3.8%, P<0.001). CONCLUSION: We show that, in addition to its antioxidant and anti-apoptotic effects, hydralazine, confers acute cardioprotection by inhibiting IRI-induced mitochondrial fission, raising the possibility of repurposing hydralazine as a novel cardioprotective therapy for improving post-infarction outcomes.


Assuntos
Dinaminas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hidralazina/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Dinaminas/metabolismo , Feminino , Células HeLa , Humanos , Preparação de Coração Isolado , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
8.
Toxicol Appl Pharmacol ; 433: 115782, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34740634

RESUMO

BACKGROUND: Epigallocatechin gallate (EGCG) has attracted increasing attention due to its beneficial effect on cardiovascular health. The aim of this study was to investigate the underlying mechanism by which EGCG protects against myocardial ischaemia/reperfusion injury (I/RI). METHODS: Murine myocardial I/RI and H2O2-induced cardiomyocyte injury models were established to evaluate the therapeutic effects of EGCG. In the myocardial I/RI mouse model, the echocardiographic parameters of ejection fraction (EF) and fraction shortening (FS) levels, infarct size, histological evaluation and transmission electron microscopy (TEM) were used to evaluate cardiac tissue damage and autophagy. MTT assays, TUNEL staining, flow cytometry and immunofluorescence (IF) were used to monitor cell viability, apoptosis and autophagy in vitro. qRT-PCR and western blotting were used to determine the mRNA and protein levels of key molecules, respectively. The epigenetic regulation of DUSP5 was assessed via RNA immunoprecipitation (RIP), RNA pull-down and chromatin immunoprecipitation (ChIP) assays. RESULTS: EGCG significantly improved cardiac function, reduced infarct size, enhanced cell viability and inhibited autophagic activity in both myocardial I/RI mouse models and H2O2-induced cardiomyocyte injury models. Moreover, EGCG suppressed H2O2- or myocardial I/R-increased Gm4419 expression, and Gm4419 overexpression dramatically abolished EGCG-mediated protective effects against myocardial I/RI. Mechanistically, Gm4419 epigenetically suppressed DUSP5 by recruiting EZH2, thus activating ERK1/2 pathway-mediated autophagy. Furthermore, the in vivo experiments further verified that the Gm4419-mediated disruptive effects of EGCG on myocardial I/RI were potentiated by DUSP5 knockdown but attenuated by DUSP5 overexpression. CONCLUSIONS: In conclusion, our findings demonstrated that EGCG protected against myocardial I/RI by modulating Gm4419/DUSP5/ERK1/2-mediated autophagy.


Assuntos
Catequina/análogos & derivados , Fosfatases de Especificidade Dupla/metabolismo , Epigênese Genética , Inativação Gênica , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , RNA Longo não Codificante/metabolismo , Animais , Autofagia/efeitos dos fármacos , Catequina/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Fosfatases de Especificidade Dupla/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Peróxido de Hidrogênio/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , RNA Longo não Codificante/genética , Transdução de Sinais
9.
Bioengineered ; 12(2): 10971-10981, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34738873

RESUMO

Macrophage infiltration is a hallmark pathological change observed in early stage myocardial ischemia/reperfusion (MI/R) injury and one of the main causes of myocardial damage. Here, we investigated the effects of p-Coumaric acid (p-CA) on macrophage polarization following MI/R injury and its mechanisms. In vitro, p-CA decreases the expression of LPS/IFN-γ-induced M1 macrophage markers (TNF-α, IL-6, iNOS and CCL2) and increases IL-4-induced M2 macrophage markers (IL-10, CD206, Arg1 and Mrc) in mouse bone marrow-derived macrophages (BMDMs). Additionally, p-CA elevated indoleamine 2, 3-dioxygenase (IDO) protein expression levels, M2 macrophage polarization and M2 macrophage markers through IL-4. In contrast, repression of IDO attenuated p-CA functions regulating BMDMs through IL-4. In vivo, IDO expression was downregulated in mouse hearts subjected to MI/R injury. Treatment of p-CA increased IDO expression in the hearts of MI/R mice. Functionally, p-CA decreases M1 macrophage markers, the number of M1 macrophages and inflammation around heart tissue following MI/R injury. Importantly, p-CA reduces cardiomyocyte apoptosis caused by MI/R. Altogether, our study identified that p-CA modulates macrophage polarization by promoting IDO expression and that p-CA attenuates macrophage-mediated inflammation following MI/R by promoting M2 macrophage polarization through IDO.


Assuntos
Polaridade Celular , Ácidos Cumáricos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Macrófagos/enzimologia , Macrófagos/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Polaridade Celular/efeitos dos fármacos , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
10.
Bioengineered ; 12(2): 9496-9506, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34699312

RESUMO

Myocardial ischemia/reperfusion (I/R) injury is a serious issue during the therapy of myocardial infarction. Herein, we explored the beneficial influence of Epigallocatechin-3-gallate (EGCG) on hypoxia/reoxygenation (H/R)-stimulated cardiomyocyte H9c2 cells damage, along with possible internal molecular mechanism related autophagy related 4C (ATG4C). H9c2 cells were subjected to H/R stimulation and/or EGCG treatment. ATG4C mRNA expression was measured via q-PCR assay. ATG4C overexpression plasmid (OE-ATG4C) was transfected to arise ATG4C level. Cell viability, apoptosis, reactive oxygen species (ROS) production, ATP level were tested via CCK-8 assay, Annexin V-FITC/PI staining, DCFH-DA staining and ATP Assay Kit, respectively. Western blotting was performed to test Cleaved-caspase 3, Cleaved-caspase 9, cytochrome C, and LC3B protein levels. H/R stimulation resulted in H9c2 cell viability loss, promoted cell apoptosis, and ROS overproduction, as well as lowered ATP level in cells. EGCG treatment alleviated H/R-resulted H9c2 cell viability loss, cell apoptosis, ROS overproduction, and reduction of ATP level. Moreover, H/R stimulation reduced the ATG4C expression in H9c2 cells, while EGCG raised the ATG4C expression. Overexpression of ATG4C strengthened the beneficial influence of EGCG on H/R-stimulated H9c2 cell viability, apoptosis and ROS production. Besides, ATG4C overexpression weakened the H/R-stimulated H9c2 cell autophagy via reducing LC3B II/I expression. EGCG exerted beneficial influence on H/R-stimulated cardiomyocytes, which protected cardiomyocytes from H/R-stimulated viability loss, apoptosis, and ROS overproduction via enhancing ATG4C expression.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/biossíntese , Catequina/análogos & derivados , Cisteína Endopeptidases/biossíntese , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/enzimologia , Catequina/farmacologia , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Traumatismo por Reperfusão Miocárdica/enzimologia
11.
Cardiovasc Diabetol ; 20(1): 199, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34607570

RESUMO

BACKGROUND: Empagliflozin is a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor used to lower blood sugar in adults with type 2 diabetes. Empagliflozin also exerts cardioprotective effects independent from glucose control, but its benefits on arrhythmogenesis and sudden cardiac death are not known. The purpose of this study was to examine the effect of empagliflozin on myocardial ischemia/reperfusion-provoked cardiac arrhythmia and sudden cardiac death in vivo. METHODS: Male Sprague Dawley rats were randomly assigned to sham-operated, control or empagliflozin groups. All except for the sham-operated rats were subjected to 5-min left main coronary artery ligation followed by 20-min reperfusion. A standard limb lead II electrocardiogram was continuously measured throughout the experiment. Coronary artery reperfusion-induced ventricular arrhythmogenesis and empagliflozin therapy were evaluated. The hearts were used for protein phosphorylation analysis and immunohistological assessment. RESULTS: Empagliflozin did not alter baseline cardiac normal conduction activity. However, empagliflozin eliminated myocardial vulnerability to sudden cardiac death (from 69.2% mortality rate in the control group to 0% in the empagliflozin group) and reduced the susceptibility to reperfusion-induced arrhythmias post I/R injury. Empagliflozin increased phosphorylation of cardiac ERK1/2 after reperfusion injury. Furthermore, inhibition of ERK1/2 using U0126 abolished the anti-arrhythmic action of empagliflozin and ERK1/2 phosphorylation. CONCLUSIONS: Pretreatment with empagliflozin protects the heart from subsequent severe lethal ventricular arrhythmia induced by myocardial ischemia and reperfusion injury. These protective benefits may occur as a consequence of activation of the ERK1/2-dependent cell-survival signaling pathway in a glucose-independent manner.


Assuntos
Arritmias Cardíacas/prevenção & controle , Compostos Benzidrílicos/farmacologia , Morte Súbita Cardíaca/prevenção & controle , Glucosídeos/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Animais , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Frequência Cardíaca/efeitos dos fármacos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosforilação , Ratos Sprague-Dawley , Transdução de Sinais
12.
Circulation ; 144(23): 1876-1890, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34672678

RESUMO

BACKGROUND: The catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), has protective functions in the cardiovascular system. TERT is not only present in the nucleus but also in mitochondria. However, it is unclear whether nuclear or mitochondrial TERT is responsible for the observed protection, and the appropriate tools are missing to dissect this. METHODS: We generated new mouse models containing TERT exclusively in the mitochondria (mitoTERT mice) or the nucleus (nucTERT mice) to finally distinguish between the functions of nuclear and mitochondrial TERT. Outcome after ischemia/reperfusion, mitochondrial respiration in the heart, and cellular functions of cardiomyocytes, fibroblasts, and endothelial cells, as well, were determined. RESULTS: All mice were phenotypically normal. Although respiration was reduced in cardiac mitochondria from TERT-deficient and nucTERT mice, it was increased in mitoTERT animals. The latter also had smaller infarcts than wild-type mice, whereas nucTERT animals had larger infarcts. The decrease in ejection fraction after 1, 2, and 4 weeks of reperfusion was attenuated in mitoTERT mice. Scar size was also reduced and vascularization increased. Mitochondrial TERT protected a cardiomyocyte cell line from apoptosis. Myofibroblast differentiation, which depends on complex I activity, was abrogated in TERT-deficient and nucTERT cardiac fibroblasts and completely restored in mitoTERT cells. In endothelial cells, mitochondrial TERT enhanced migratory capacity and activation of endothelial nitric oxide synthase. Mechanistically, mitochondrial TERT improved the ratio between complex I matrix arm and membrane subunits, explaining the enhanced complex I activity. In human right atrial appendages, TERT was localized in mitochondria and there increased by remote ischemic preconditioning. The telomerase activator TA-65 evoked a similar effect in endothelial cells, thereby increasing their migratory capacity, and enhanced myofibroblast differentiation. CONCLUSIONS: Mitochondrial, but not nuclear TERT, is critical for mitochondrial respiration and during ischemia/reperfusion injury. Mitochondrial TERT improves complex I subunit composition. TERT is present in human heart mitochondria, and remote ischemic preconditioning increases its level in those organelles. TA-65 has comparable effects ex vivo and improves the migratory capacity of endothelial cells and myofibroblast differentiation. We conclude that mitochondrial TERT is responsible for cardioprotection, and its increase could serve as a therapeutic strategy.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/enzimologia , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Telomerase/metabolismo , Animais , Complexo I de Transporte de Elétrons/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/genética , Proteínas Mitocondriais/genética , Traumatismo por Reperfusão Miocárdica/genética , Telomerase/genética
13.
J Biochem Mol Toxicol ; 35(12): e22911, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34462995

RESUMO

5-Azacytidine is well known for its clinical usage in cancer treatments. The present study investigates the role of 5-azacytidine as a cardioprotective agent to ameliorate ischemia/reperfusion (I/R) injury. The cardioprotective effect of 5-azacytidine was evaluated in three experimental models: in vitro, ex vivo, and in vivo. The cardioprotective effect was evaluated via cell viability, hemodynamic indices, infarct size measurement, and assessment of histopathology, oxidative stress, and mitochondrial function. The experiments were repeated in the presence of PI3K/GSK3ß and mitochondrial KATP (mtKATP ) cardioprotective signaling pathway inhibitors to understand the underlying mechanism. 5-Azacytidine improved the cell viability by 29% in I/R-challenged H9C2 cells. Both isolated rat heart and LAD ligation model confirmed the infarct sparing effect of 5-azacytidine against I/R. It also provided a beneficial effect by normalizing the altered hemodynamics, reducing the infarct size and cardiac injury markers, reversing the perturbation of mitochondria, reduced oxidative stress, and improved the pPI3K and pAKT protein expression from I/R. In addition, it also augmented the activation of PI3K/AKT and mtKATP signaling pathway, confirmed by using wortmannin (PI3K inhibitor), SB216763 (GSK3ß inhibitor), and glibenclamide (mtKATP channel closer). The effectiveness of 5-azacytidine as a cardioprotective agent is attributed to its activation of the PI3K/GSK3ß and mtKATP channel signaling axis, thereby preserving mitochondrial function and reducing oxidative stress.


Assuntos
Azacitidina/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Precondicionamento Isquêmico Miocárdico/métodos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Fosfatidilinositol 3-Quinases/metabolismo , Canais de Potássio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Metilação de DNA/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Técnicas In Vitro , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos
14.
Am J Physiol Heart Circ Physiol ; 321(4): H650-H662, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448639

RESUMO

The role of the Na+/K+-ATPase (NKA) in heart failure associated with myocardial infarction (MI) is poorly understood. The elucidation of its precise function is hampered by the existence of two catalytic NKA isoforms (NKA-α1 and NKA-α2). Our aim was to analyze the effects of an increased NKA-α2 expression on functional deterioration and remodeling during long-term MI treatment in mice and its impact on Ca2+ handling and inotropy of the failing heart. Wild-type (WT) and NKA-α2 transgenic (TG) mice (TG-α2) with a cardiac-specific overexpression of NKA-α2 were subjected to MI injury for 8 wk. As examined by echocardiography, gravimetry, and histology, TG-α2 mice were protected from functional deterioration and adverse cardiac remodeling. Contractility and Ca2+ transients (Fura 2-AM) in cardiomyocytes from MI-treated TG-α2 animals showed reduced Ca2+ amplitudes during pacing or after caffeine application. Ca2+ efflux in cardiomyocytes from TG-α2 mice was accelerated and diastolic Ca2+ levels were decreased. Based on these alterations, sarcomeres exhibited an enhanced sensitization and thus increased contractility. After the acute stimulation with the ß-adrenergic agonist isoproterenol (ISO), cardiomyocytes from MI-treated TG-α2 mice responded with increased sarcomere shortenings and Ca2+ peak amplitudes. This positive inotropic response was absent in cardiomyocytes from WT-MI animals. Cardiomyocytes with NKA-α2 as predominant isoform minimize Ca2+ cycling but respond to ß-adrenergic stimulation more efficiently during chronic cardiac stress. These mechanisms might improve the ß-adrenergic reserve and contribute to functional preservation in heart failure.NEW & NOTEWORTHY Reduced systolic and diastolic calcium levels in cardiomyocytes from NKA-α2 transgenic mice minimize the desensitization of the ß-adrenergic signaling system. These effects result in an improved ß-adrenergic reserve and prevent functional deterioration and cardiac remodeling.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Insuficiência Cardíaca/enzimologia , Contração Miocárdica , Infarto do Miocárdio/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/enzimologia , Receptores Adrenérgicos beta/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Remodelação Ventricular , Agonistas Adrenérgicos beta/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos Transgênicos , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Receptores Adrenérgicos beta/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/genética , Remodelação Ventricular/efeitos dos fármacos
15.
Nutr Metab Cardiovasc Dis ; 31(10): 2979-2986, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34362635

RESUMO

BACKGROUND AND AIMS: Coronary heart disease is a major global health concern. Further, severity of this condition is greatly influenced by myocardial ischemia/reperfusion (I/R) injury. Branched-chain amino acids (BCAAs) have cardioprotective effects against I/R via mammalian target of rapamycin (mTOR) activity, wherein Leu is considered to particularly regulate mTOR activation. However, the mechanism underlying cardioprotective effects of Leu via mTOR activity is not fully elucidated. Here, we aimed to study the signaling pathway of cardioprotection and mitochondrial function induced by Leu treatment. METHODS AND RESULTS: Cardiac myocytes isolated from adult male Wistar rats were incubated and exposed to simulated I/R (SI/R) injury by replacing the air content. Cardiac myocytes were treated with Leu and subsequently, their survival rate was calculated. To elucidate the signaling pathway and mitochondrial function, immunoblots and mitochondrial permeability transition pore were examined. Cell survival rate was decreased with SI/R but improved by 160 µM Leu (38.5 ± 3.6% vs. 64.5 ± 4.2%, respectively, p < 0.001). Although rapamycin (mTOR inhibitor) prevented this cardioprotective effect induced by Leu, wortmannin (PI3K inhibitor) did not interfere with this effect. In addition, we indicated that overexpression of Opa-1 and mitochondrial function are ameliorated via Leu-induced mitochondrial biogenesis. In contrast, knockdown of Opa-1 suppressed Leu-induced cardioprotection. CONCLUSION: Leu treatment is critical in rendering a cardioprotective effect exhibited by BCAAs via mTOR signaling. Furthermore, Leu improved mitochondrial function.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Leucina/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , GTP Fosfo-Hidrolases/genética , Masculino , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Biogênese de Organelas , Ratos Wistar , Transdução de Sinais
16.
Biomed Res Int ; 2021: 9933998, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307674

RESUMO

Myocardial infarction is the main cause of death in patients with coronary heart disease. At present, the main method to treat cardiovascular disease is perfusion therapy. Myocardial ischemia-reperfusion will inevitably lead to reperfusion injury, which is also a major problem in the treatment of cardiovascular diseases. It has been reported that mir-451 in microRNA family participates in the protection of myocardial ischemia-reperfusion by regulating AMPK. The aim of this study was to investigate the effect of mir-451 on myocardial ischemia-reperfusion in rats by regulating AMPK signaling pathway. Sixty adult male rats were selected to establish myocardial ischemia-reperfusion animal model by ligating and loosening coronary artery. The expression level of mir-451 was regulated by injection of mir-451 virus vector and antibody, and the effect of increased or decreased mir-451 expression level on the activity of AMPK signaling pathway was detected. The myocardial infarct area and apoptosis rate of myocardial tissue were detected after 75 min ischemia-reperfusion. The results showed that when the expression level of mir-451 decreased by 15.7%, the activity index of AMPK signaling pathway was increased by 18.3%, the infarct area was reduced by 22.4%, and the apoptosis rate of myocardial cells was decreased by 25.2%. At the same time, the pathological structure of myocardial tissue was improved. Therefore, mir-451 is an inhibitor gene of AMPK signaling pathway. Reducing the expression of mir-451 can enhance the activity of AMPK signal pathway, and the increase of AMPK signal pathway activity is beneficial to reduce myocardial ischemia-reperfusion injury.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Transdução de Sinais , Animais , Apoptose/genética , Regulação para Baixo/genética , Inflamação/patologia , MicroRNAs/genética , Infarto do Miocárdio/genética , Ratos
17.
Cell Death Dis ; 12(7): 665, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215721

RESUMO

It has been reported that growth differentiation factor 11 (GDF11) protects against myocardial ischemia/reperfusion (IR) injury, but the underlying mechanisms have not been fully clarified. Considering that GDF11 plays a role in the aging/rejuvenation process and that aging is associated with telomere shortening and cardiac dysfunction, we hypothesized that GDF11 might protect against IR injury by activating telomerase. Human plasma GDF11 levels were significantly lower in acute coronary syndrome patients than in chronic coronary syndrome patients. IR mice with myocardial overexpression GDF11 (oe-GDF11) exhibited a significantly smaller myocardial infarct size, less cardiac remodeling and dysfunction, fewer apoptotic cardiomyocytes, higher telomerase activity, longer telomeres, and higher ATP generation than IR mice treated with an adenovirus carrying a negative control plasmid. Furthermore, mitochondrial biogenesis-related proteins and some antiapoptotic proteins were significantly upregulated by oe-GDF11. These cardioprotective effects of oe-GDF11 were significantly antagonized by BIBR1532, a specific telomerase inhibitor. Similar effects of oe-GDF11 on apoptosis and mitochondrial energy biogenesis were observed in cultured neonatal rat cardiomyocytes, whereas GDF11 silencing elicited the opposite effects to oe-GDF11 in mice. We concluded that telomerase activation by GDF11 contributes to the alleviation of myocardial IR injury through enhancing mitochondrial biogenesis and suppressing cardiomyocyte apoptosis.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Mitocôndrias Cardíacas/enzimologia , Infarto do Miocárdio/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/enzimologia , Biogênese de Organelas , Telomerase/metabolismo , Aminobenzoatos/farmacologia , Animais , Apoptose , Proteínas Morfogenéticas Ósseas/genética , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Fatores de Diferenciação de Crescimento/genética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Naftalenos/farmacologia , Ratos , Transdução de Sinais , Telomerase/antagonistas & inibidores
18.
Pharmacol Res ; 170: 105716, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34102229

RESUMO

Ischemia and reperfusion (I/R) cause a reduction in arterial blood supply to tissues, followed by the restoration of perfusion and consequent reoxygenation. The reestablishment of blood flow triggers further damage to ischemic tissue through reactive oxygen species (ROS) accumulation, interference with cellular ion homeostasis, opening of mitochondrial permeability transition pores (mPTPs) and promotion of cell death (apoptosis or necrosis). PKC-δ and PKC-ε, belonging to a family of serine/threonine kinases, have been demonstrated to play important roles during I/R injury in cardiovascular diseases. However, the cardioprotective mechanisms of PKC-δ and PKC-ε in I/R injury have not been elaborated until now. This article discusses the roles of PKC-δ and PKC-ε during myocardial I/R in redox regulation (redox signaling and oxidative stress), cell death (apoptosis and necrosis), Ca2+ overload, and mitochondrial dysfunction.


Assuntos
Mitocôndrias Cardíacas/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/enzimologia , Proteína Quinase C-delta/metabolismo , Proteína Quinase C-épsilon/metabolismo , Animais , Apoptose , Cálcio/metabolismo , Humanos , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Necrose , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
19.
Arterioscler Thromb Vasc Biol ; 41(8): 2293-2314, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34039018

RESUMO

OBJECTIVE: Remote ischemic preconditioning (RIPC) is an intervention process where the application of multiple cycles of short ischemia/reperfusion (I/R) in a remote vascular bed provides protection against I/R injury. However, the identity of the specific RIPC factor and the mechanism by which RIPC alleviates I/R injury remains unclear. Here, we have investigated the identity and the mechanism by which the RIPC factor provides protection. APPROACH AND RESULTS: Using fluorescent in situ hybridization and immunofluorescence, we found that RIPC induces Nrg1ß expression in the endothelial cells, which is secreted into the serum. Whereas, RIPC protected against myocardial apoptosis and infarction, treatment with neutralizing-Nrg1 antibodies abolished the protective effect of RIPC. Further, increased superoxide anion generated in RIPC is required for Nrg1 expression. Improved myocardial perfusion and nitric oxide production were achieved by RIPC as determined by contrast echocardiography and electron spin resonance. However, treatment with neutralizing-Nrg1ß antibody abrogated these effects, suggesting Nrg1ß is a RIPC factor. ErbB2 (Erb-B2 receptor tyrosine kinase 2) is not expressed in the adult murine cardiomyocytes, but expressed in the endothelial cells of heart which is degraded in I/R. RIPC-induced Nrg1ß interacts with endothelial ErbB2 and thereby prevents its degradation. Mitochondrial Trx2 (thioredoxin) is degraded in I/R, but rescue of ErbB2 by Nrg1ß prevents Trx-2 degradation that decreased myocardial apoptosis in I/R. CONCLUSIONS: Nrg1ß is a RIPC factor that interacts with endothelial ErbB2 and prevents its degradation, which in turn prevents Trx2 degradation due to phosphorylation and inactivation of ATG5 (autophagy-related 5) by ErbB2. Nrg1ß also restored loss of eNOS (endothelial nitric oxide synthase) function in I/R via its interaction with Src.


Assuntos
Autofagia , Células Endoteliais/metabolismo , Membro Posterior/irrigação sanguínea , Precondicionamento Isquêmico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/enzimologia , Neuregulina-1/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Receptor ErbB-2/metabolismo , Tiorredoxinas/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Proteína 5 Relacionada à Autofagia/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Neuregulina-1/antagonistas & inibidores , Fosforilação , Estabilidade Proteica , Proteólise , Receptor ErbB-2/genética , Transdução de Sinais , Quinases da Família src/metabolismo
20.
Basic Res Cardiol ; 116(1): 21, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33751227

RESUMO

Myocardial connexin 43 (Cx43) forms gap junctions and hemichannels, and is also present within subsarcolemmal mitochondria. The protein is phosphorylated by several kinases including mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and casein kinase 1 (CK1). A reduction in Cx43 content abrogates myocardial infarct size reduction by ischemic preconditioning (IPC). The present study characterizes the contribution of Cx43 phosphorylation towards mitochondrial function, hemichannel activity, and the cardioprotection by IPC in wild-type (WT) mice and in mice in which Cx43-phosphorylation sites targeted by above kinases are mutated to non-phosphorylatable residues (Cx43MAPKmut, Cx43PKCmut, and Cx43CK1mut mice). The amount of Cx43 in the left ventricle and in mitochondria was reduced in all mutant strains compared to WT mice and Cx43 phosphorylation was altered at residues not directly targeted by the mutations. Whereas complex 1 respiration was reduced in all strains, complex 2 respiration was decreased in Cx43CK1mut mice only. In Cx43 epitope-mutated mice, formation of reactive oxygen species and opening of the mitochondrial permeability transition pore were not affected. The hemichannel open probability was reduced in Cx43PKCmut and Cx43CK1mut but not in Cx43MAPKmut cardiomyocytes. Infarct size in isolated saline-perfused hearts after ischemia/reperfusion (45 min/120 min) was comparable between genotypes and was significantly reduced by IPC (3 × 3 min ischemia/5 min reperfusion) in WT, Cx43MAPKmut, and Cx43PKCmut, but not in Cx43CK1mut mice, an effect independent from the amount of Cx43 and the probability of hemichannel opening. Taken together, our study shows that alterations of Cx43 phosphorylation affect specific cellular functions and highlights the importance of Cx43 phosphorylation by CK1 for IPC's cardioprotection.


Assuntos
Caseína Quinase I/metabolismo , Conexina 43/metabolismo , Precondicionamento Isquêmico Miocárdico , Mitocôndrias Cardíacas/enzimologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/enzimologia , Animais , Conexina 43/genética , Modelos Animais de Doenças , Preparação de Coração Isolado , Camundongos Mutantes , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...